Answers 1.3
Theory
- Integration of the OpenAI Moderation API: obtain an API key, add a client library on the backend, and insert moderation into the content submission pipeline so all data is analyzed before publication.
- Customization: tune sensitivity, focus on specific violations, and use your own allow/deny lists in line with community standards and compliance requirements.
- Extending moderation: beyond text, add checks for images and video (using OpenAI tools or third‑party solutions) for comprehensive protection.
- Delimiters reduce prompt‑injection risk by separating user input from system instructions and preserving command integrity.
- Isolating commands with delimiters clearly separates executable instructions from user data, preventing injection of malicious directives.
- Additional measures: strict input validation, least‑privilege design, allow‑lists, regular expressions, monitoring, and logging to detect anomalies.
- Direct assessment: ask the model to classify input as an injection attempt or not — this reduces false positives and improves response accuracy.
- Response measures: notify and educate users, ask them to rephrase, isolate suspicious content for human review, and dynamically adjust sensitivity.
- Pros and cons of direct assessment: accuracy and adaptability versus development/maintenance complexity and the need to balance security with UX.
- Combining the Moderation API with anti‑injection strategies significantly improves the safety and integrity of UGC platforms.
Practice (sketches)
-
Moderate a single text fragment:
from openai import OpenAI client = OpenAI() def moderate_content(content: str) -> bool: resp = client.moderations.create(model="omni-moderation-latest", input=content) return bool(resp.results[0].flagged)
-
Remove a delimiter from a string:
def sanitize_delimiter(input_text: str, delimiter: str) -> str: return input_text.replace(delimiter, "")
-
Check input length:
def validate_input_length(input_text: str, min_length=1, max_length=200) -> bool: return min_length <= len(input_text) <= max_length
-
User session with simple heuristics:
class UserSession: def __init__(self, user_id: int): self.user_id = user_id self.trust_level = 0 self.sensitivity_level = 5 def adjust_sensitivity(self): if self.trust_level > 5: self.sensitivity_level = max(1, self.sensitivity_level - 1) else: self.sensitivity_level = min(10, self.sensitivity_level + 1) def evaluate_input(self, user_input: str) -> bool: dangerous_keywords = ["exec", "delete", "drop"] return any(k in user_input.lower() for k in dangerous_keywords) def handle_input(self, user_input: str): if self.evaluate_input(user_input): if self.trust_level < 5: print("Input flagged and sent for security review.") else: print("The request looks suspicious. Please clarify or rephrase.") else: print("Input accepted. Thank you!") print("Remember: input should be clear and free of potentially dangerous commands.")
-
Direct assessment for injection (stub logic):
def direct_evaluation_for_injection(user_input: str) -> str: if "ignore instructions" in user_input.lower() or "disregard previous guidelines" in user_input.lower(): return 'Y' return 'N'
-
Example integration in a main loop:
if __name__ == "__main__": session = UserSession(user_id=1) while True: text = input("Enter text (or 'exit'): ") if text.lower() == 'exit': break text = sanitize_delimiter(text, "####") if not validate_input_length(text): print("Input too short/long.") continue if moderate_content(text): print("Content flagged as unacceptable. Please revise.") continue if direct_evaluation_for_injection(text) == 'Y': print("Potential injection detected. Please rephrase.") continue session.handle_input(text)